(See original for numbered references:
https://www.cureus.com/articles/203052-covid-19-mrna-vaccines-lessons-learned-from-the-registrational-trials-and-global-vaccination-campaign#!/ )
References
Polack FP, Thomas SJ, Kitchin N, et al.: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020, 383:2603-15. 10.1056/NEJMoa2034577
Baden LR, El Sahly HM, Essink B, et al.: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021, 384:403-16. 10.1056/NEJMoa2035389
Singh JA, Kochhar S, Wolff J: Placebo use and unblinding in COVID-19 vaccine trials: recommendations of a WHO Expert Working Group. Nat Med. 2021, 27:569-70. 10.1038/s41591-021-01299-5
Kaplan KM, Marder DC, Cochi SL, et al.: Mumps in the workplace. Further evidence of the changing epidemiology of a childhood vaccine-preventable disease. JAMA. 1988, 260:1434-8. 10.1001/jama.260.10.1434
Vaccine Research & Development: How can COVID-19 vaccine development be done quickly and safely?. (2013). Accessed: October 16, 2023:
https://coronavirus.jhu.edu/vaccines/timeline.
New York State Department of Health: The science behind vaccine research and testing. (2023). Accessed: October 16, 2023:
https://www.health.ny.gov/prevention/immunization/vaccine_safety/science.htm.
Did National Security Imperatives Compromise COVID-19 Vaccine Safety?. (2022). Accessed: September 30, 2023:
https://www.trialsitenews.com/a/did-national-security-imperatives-compromise-covid-19-vaccine-safety-adfea242.
America's Long, Expensive, and Deadly Love Affair with mRNA. (2023). Accessed: March 15, 2023:
https://petermcculloughmd.substack.com/p/americas-long-expensive-and-deadly.
Wagner R, Hildt E, Grabski E, et al.: Accelerated development of COVID-19 vaccines: technology platforms, benefits, and associated risks. Vaccines (Basel). 2021, 9:747. 10.3390/vaccines9070747
Conklin L, Hviid A, Orenstein WA, Pollard AJ, Wharton M, Zuber P: Vaccine safety issues at the turn of the 21st century. BMJ Glob Health. 2021, 6:10.1136/bmjgh-2020-004898
Alqatari S, Ismail M, Hasan M, et al.: Emergence of post COVID-19 vaccine autoimmune diseases: a single center study. Infect Drug Resist. 2023, 16:1263-78. 10.2147/IDR.S394602
Immunization Safety Review: SV40 Contamination of Polio Vaccine and Cancer. Stratton K, Almario DA, McCormick MC (ed): National Academies Press (US), Washington DC; 2002.
https://www.ncbi.nlm.nih.gov/books/NBK221112/.
Buonocore SM, van der Most RG: Narcolepsy and H1N1 influenza immunology a decade later: what have we learned?. Front Immunol. 2022, 13:902840. 10.3389/fimmu.2022.902840
Greenstreet RL: Estimation of the probability that Guillain-Barre syndrome was caused by the swine flu vaccine: US experience (1976-77). Med Sci Law. 1984, 24:61-7. 10.1177/002580248402400110
Doshi P: Covid-19 vaccines: in the rush for regulatory approval, do we need more data?. BMJ. 2021, 373:n1244. 10.1136/bmj.n1244
Thorp HH: A dangerous rush for vaccines. Science. 2020, 369:885. 10.1126/science.abe3147
Torreele E: The rush to create a COVID-19 vaccine may do more harm than good. BMJ. 2020, 370:m3209. 10.1136/bmj.m3209
Lalani HS, Nagar S, Sarpatwari A, Barenie RE, Avorn J, Rome BN, Kesselheim AS: US public investment in development of mRNA covid-19 vaccines: retrospective cohort study. BMJ. 2023, 380:e073747. 10.1136/bmj-2022-073747
Nayak RK, Lee CC, Avorn J, Kesselheim AS: Public-sector contributions to novel biologic drugs. JAMA Intern Med. 2021, 181:1522-5. 10.1001/jamainternmed.2021.3720
BARDA Strategic Plan, 2022-2026: Fortifying the Nation's Health Security. Biomedical Advanced Research and Development Authority, Washington, D.C.; 2022.
https://www.medicalcountermeasures.gov/media/38717/barda-strategic-plan-2022-2026.pdf.
Banoun H: mRNA: vaccine or gene therapy? he safety regulatory issues. Int J Mol Sci. 2023, 24:10514. 10.3390/ijms241310514
Guerriaud M, Kohli E: RNA-based drugs and regulation: toward a necessary evolution of the definitions issued from the European Union legislation. Front Med (Lausanne). 2022, 9:1012497. 10.3389/fmed.2022.1012497
Van Lint S, Renmans D, Broos K, et al.: The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines. 2015, 14:235-51. 10.1586/14760584.2015.957685
Cosentino M, Marino F: Understanding the pharmacology of COVID-19 mRNA vaccines: playing dice with the spike?. Int J Mol Sci. 2022, 23:10881. 10.3390/ijms231810881
Trougakos IP, Terpos E, Alexopoulos H, et al.: Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022, 28:542-54. 10.1016/j.molmed.2022.04.007
Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA: Innate immune suppression by SARS-CoV-2 mRNA vaccinations: the role of G-quadruplexes, exosomes, and microRNAs. Food Chem Toxicol. 2022, 164:113008. 10.1016/j.fct.2022.113008
Çalık Ş, Demir İ, Uzeken E, Tosun S, Özkan Özdemir H, Coşkuner SA, Demir S: Investigation of the relationship between the immune responses due to COVID-19 vaccine and peripheral bloodlymphocyte subtypes of healthcare workers [Article in Turkish]. Mikrobiyol Bul. 2022, 56:729-39.
Heinz FX, Stiasny K: Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 2021, 6:104. 10.1038/s41541-021-00369-6
Shir-Raz Y, Elisha E, Martin B, Ronel N, Guetzkow J: Censorship and suppression of Covid-19 heterodoxy: tactics and counter-tactics. Minerva. 2022, 1-27. 10.1007/s11024-022-09479-4
We’re Fighting the Covid Censors. (2023). Accessed: January 3, 2024:
https://thespectator.com/topic/were-fighting-the-covid-censors-censorship/.
Doshi P: Will COVID-19 vaccines save lives? Current trials aren't designed to tell us. BMJ. 2020, 371:m4037. 10.1136/bmj.m4037
Pfizer: COVID-19 vaccine maker pledge. (2020). Accessed: November 24, 2023:
https://www.pfizer.com/news/announcements/covid-19-vaccine-maker-pledge.
Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC: COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. Eur Rev Med Pharmacol Sci. 2021, 25:1663-9. 10.26355/eurrev_202102_24877
‘Absolutely remarkable': No one who got Moderna's vaccine in trial developed severe COVID-19. (2020). Accessed: October 16, 2023:
https://www.science.org/content/article/absolutely-remarkable-no-one-who-got-modernas-vaccine-trial-developed-severe-....
Thomas SJ, Moreira ED Jr, Kitchin N, et al.: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med. 2021, 385:1761-73. 10.1056/NEJMoa2110345
Plausibility But Not Science Has Dominated Public Discussions of the Covid Pandemic. (2022). Accessed: October 16, 2023:
https://brownstone.org/articles/plausibility-but-not-science-has-dominated-public-discussions-of-the-covid-pandemic/.
Peter Doshi: Pfizer and Moderna’s “95% effective” vaccines—we need more details and the raw data. (2021). Accessed: October 16, 2023:
https://blogs.bmj.com/bmj/2021/01/04/peter-doshi-pfizer-and-modernas-95-effective-vaccines-we-need-more-details-and-t....
Interim Report - Adolescent 6-Month Update: A Phase 1/2/3, Placebo-Controlled, Randomized, Observer-Blind, Dose-Finding Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of SARS-CoV-2 RNA Vaccine Candidates Against COVID-19 in Healthy Individuals. Pfizer Inc, New York, NY; 2021. 10.17226/10534https://data.parliament.uk/DepositedPapers/Files/DEP2023-0138/Clinical_Study_Report_Part_2.pdf.
Moderna Clinical study protocol: A phase 3, randomized, stratified, observer-blind, placebo-controlled study to evaluate the efficacy, safety, and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine in adults aged 18 years and older. Protocol No. mRNA-1273-P301. (2020). (2020). Accessed: December 20, 2023:
https://www.modernatx.com/sites/default/files/mRNA-1273-P301-Protocol.pdf .
Pezzullo AM, Axfors C, Contopoulos-Ioannidis DG, Apostolatos A, Ioannidis JP: Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environ Res. 2023, 216:114655. 10.1016/j.envres.2022.114655
Chenchula S, Vidyasagar K, Pathan S, et al.: Global prevalence and effect of comorbidities and smoking status on severity and mortality of COVID-19 in association with age and gender: a systematic review, meta-analysis and meta-regression. Sci Rep. 2023, 13:6415. 10.1038/s41598-023-33314-9
Thornley S, Morris AJ, Sundborn G, Bailey S: How fatal is COVID-19 compared with seasonal influenza? The devil is in the detail [Rapid Response]. BMJ. 2020,
Islam N, Shkolnikov VM, Acosta RJ, et al.: Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries. BMJ. 2021, 373:n1137. 10.1136/bmj.n1137
Baral S, Chandler R, Prieto RG, Gupta S, Mishra S, Kulldorff M: Leveraging epidemiological principles to evaluate Sweden's COVID-19 response. Ann Epidemiol. 2021, 54:21-6. 10.1016/j.annepidem.2020.11.005
Barbari A: COVID-19 vaccine concerns: fact or fiction?. Exp Clin Transplant. 2021, 19:627-34. 10.6002/ect.2021.0056
Thames AH, Wolniak KL, Stupp SI, Jewett MC: Principles learned from the international race to develop a safe and effective COVID-19 vaccine. ACS Cent Sci. 2020, 6:1341-7. 10.1021/acscentsci.0c00644
Montano D: Frequency and associations of adverse reactions of COVID-19 vaccines reported to pharmacovigilance systems in the European Union and the United States. Front Public Health. 2021, 9:756633. 10.3389/fpubh.2021.756633
Yan MM, Zhao H, Li ZR, et al.: Serious adverse reaction associated with the COVID-19 vaccines of BNT162b2, Ad26.COV2.S, and mRNA-1273: gaining insight through the VAERS. Front Pharmacol. 2022, 13:921760. 10.3389/fphar.2022.921760
Classen B: US COVID-19 vaccines proven to cause more harm than good based on pivotal clinical trial data analyzed using the proper scientific endpoint, “all cause severe morbidity”. Trends Int Med. 2021, 1:1-6.
Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P: Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022, 40:5798-805. 10.1016/j.vaccine.2022.08.036
Mörl F, Günther M, Rockenfeller R: Is the harm-to-benefit ratio a key criterion in vaccine approval?. Front Med (Lausanne). 2022, 9:879120. 10.3389/fmed.2022.879120
Benn CS, Schaltz-Buchholzer F, Nielsen S, et al.: Randomised clinical trials of COVID-19 vaccines: do adenovirus-vector vaccines have beneficial non-specific effects?. Lancet preprint. April. 5:2022. 10.2139/ssrn.4072489
Have People Been Given the Wrong Vaccine?. (2022). Accessed: October 16, 2023:
https://brownstone.org/articles/have-people-been-given-the-wrong-vaccine/.
Michels CA, Perrier D, Kunadhasan J, et al.: Forensic analysis of the 38 subject deaths in the 6- month interim report of the Pfizer/BioNTech BNT162b2 mRNA vaccine clinical trial. IJVTPR. 2023, 3:973-1009. 10.56098/ijvtpr.v3i1.85
Vaccines and Related Biological Products Advisory Committee Meeting, September 17, 2021. FDA Briefing Document: Application for Licensure of a Booster Dose for COMIRNATY (COVID-19 Vaccine, mRNA). US Food and Drug Administration, White Oak, MD; 2021.
https://www.fda.gov/media/152176/download.
Summary Basis for Regulatory Action. Review Committee’s Recommendation to Approve Pfizer-BioNTech product, COMIRNATY (COVID-19 Vaccine, mRNA). US Food and Drug Administration, White Oak, MD; 2021.
https://www.fda.gov/media/151733/download.
Oster ME, Shay DK, Su JR, et al.: Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022, 327:331-40. 10.1001/jama.2021.24110
Rees AR: Viruses, vaccines and cardiovascular effects. Br J Cardiol. 2022, 29:16. 10.5837/bjc.2022.016
Almas T, Rehman S, Mansour E, et al.: Epidemiology, clinical ramifications, and cellular pathogenesis of COVID-19 mRNA-vaccination-induced adverse cardiovascular outcomes: a state-of-the-heart review. Biomed Pharmacother. 2022, 149:112843. 10.1016/j.biopha.2022.112843
Gao J, Feng L, Li Y, et al.: A systematic review and meta-analysis of the association between SARS-CoV-2 vaccination and myocarditis or pericarditis. Am J Prev Med. 2023, 64:275-84. 10.1016/j.amepre.2022.09.002
Yasmin F, Najeeb H, Naeem U, et al.: Adverse events following COVID-19 mRNA vaccines: a systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immun Inflamm Dis. 2023, 11:e807. 10.1002/iid3.807
Shiravi AA, Ardekani A, Sheikhbahaei E, Heshmat-Ghahdarijani K: Cardiovascular complications of SARS-CoV-2 vaccines: an overview. Cardiol Ther. 2022, 11:13-21. 10.1007/s40119-021-00248-0
Jeet Kaur R, Dutta S, Charan J, et al.: Cardiovascular adverse events reported from COVID-19 vaccines: a study based on WHO database. Int J Gen Med. 2021, 14:3909-27. 10.2147/IJGM.S324349
Did the Pfizer Trial Show the Vaccine Increases Heart Disease Deaths?. (2022). Accessed: October 16, 2023:
https://chrismasterjohnphd.substack.com/p/did-the-pfizer-trial-show-the-vaccine.
Brown RB: Outcome reporting bias in COVID-19 mRNA vaccine clinical trials. Medicina (Kaunas). 2021, 57:199. 10.3390/medicina57030199
Olliaro P, Torreele E, Vaillant M: COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room. Lancet Microbe. 2021, 2:e279-80. 10.1016/S2666-5247(21)00069-0
Ali T, Mujawar S, Sowmya AV, Saldanha D, Chaudhury S: Dangers of mRNA vaccines. Ind Psychiatry J. 2021, 30:S291-3. 10.4103/0972-6748.328833
US Food and Drug Administration: Roster of the vaccines and related biological products advisory committee. (2020). Accessed: December 20, 2023:
https://www.fda.gov/advisory-committees/vaccines-and-related-biological-products-advisory-committee/roster-vaccines-a....
Communicating Risks and Benefits: An Evidence-Based User's Guide. Fischhoff B, Brewer N, Downs J (ed): US Department of Health and Human Services, Silver Spring, MA; 2011.
https://www.fda.gov/about-fda/reports/communicating-risks-and-benefits-evidence-based-users-guide.
Adams K, Riddles JJ, Rowley EA, et al.: Number needed to vaccinate with a COVID-19 booster to prevent a COVID-19-associated hospitalization during SARS-CoV-2 Omicron BA.1 variant predominance, December 2021-February 2022, VISION Network: a retrospective cohort study. Lancet Reg Health Am. 2023, 23:100530. 10.1016/j.lana.2023.100530
Gøtzsche PC, Demasi M: Serious harms of the COVID-19 vaccines: a systematic review [PREPRINT]. medRxiv. 2022, 10.1101/2022.12.06.22283145
Gøtzsche PC: Deadly Medicines and Organized Crime: How Big Pharma has Corrupted Health Care. CRC Press, Boca Raton, FL; 2013.
Gøtzsche PC: Vaccines: Truth, Lies, and Controversy . Skyhorse Publishing, New York; 2020.
Gøtzsche PC: Made in China: the coronavirus that killed millions of people. Indian J Med Ethics. 2022, VII:254. 10.20529/IJME.2021.098
Are Adverse Events in Covid-19 Vaccine Trials Under-Reported?. (2021). Accessed: October 16, 2023:
https://maryannedemasi.com/publications/f/are-adverse-events-in-covid-19-vaccine-trials-under-reported.
Hazell L, Shakir SA: Under-reporting of adverse drug reactions : a systematic review. Drug Saf. 2006, 29:385-96. 10.2165/00002018-200629050-00003
Johnson RM, Doshi P, Healy D: Covid-19: should doctors recommend treatments and vaccines when full data are not publicly available?. BMJ. 2020, 370:m3260. 10.1136/bmj.m3260
Summary of Clinical Safety. Pfizer Inc., New York, NY; 2021.
https://phmpt.org/wp-content/uploads/2021/12/STN-125742_0_0-Section-2.7.4-summary-clin-safety.pdf.
Murphy SL, Kochanek KD, Xu J, Arias E.: Mortality in the United States, 2020. NCHS Data Brief. 2021, No. 427:
Schreckenberg R, Woitasky N, Itani N, Czech L, Ferdinandy P, Schulz R: Cardiac side effects of RNA-based SARS-CoV-2 vaccines: hidden cardiotoxic effects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure. Br J Pharmacol. 2024, 181:345-61. 10.1111/bph.16262
Vaccines and Related Biological Products Advisory Committee, December 10, 2020. FDA Briefing Document: Pfizer-BioNTech COVID-19 Vaccine. US Food and Drug Administration, White Oak, MD; 2020.
https://www.fda.gov/media/144245/download.
Palmer M, Bhakdi S, Hooker B, et al.: Evidence of fraud in Pfizer’s clinical trials. mRNA Vaccine Toxicity. Doctors for COVID Ethics, Amsterdam, The Netherlands; 2023. 37-9.
Assessment Report: Comirnaty. European Medicines Agency, Amsterdam, The Netherlands; 2020.
https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf.
Anomalous Patterns of Mortality and Morbidity in Pfizer’s Covid-19 Vaccine Trial. (2023). Accessed: October 20, 2023:
https://wherearethenumbers.substack.com/p/anomalous-patterns-of-mortality-and.
Thacker PD: Covid-19: researcher blows the whistle on data integrity issues in Pfizer's vaccine trial. BMJ. 2021, 375:n2635. 10.1136/bmj.n2635
Godlee F: A strong pandemic response relies on good data. BMJ. 2021, 375:n2668. 10.1136/bmj.n2668
Cardozo T, Veazey R: Informed consent disclosure to vaccine trial subjects of risk of COVID-19 vaccines worsening clinical disease. Int J Clin Pract. 2021, 75:e13795. 10.1111/ijcp.13795
Annas GJ: Beyond Nazi War Crimes Experiments: The Voluntary Consent Requirement of the Nuremberg Code at 70. Am J Public Health. 2018, 108:42-46. 10.2105/AJPH.2017.304103
Healy D, Germán Roux A, Dressen B: The coverage of medical injuries in company trial informed consent forms. Int J Risk Saf Med. 2023, 34:121-8. 10.3233/JRS-220043
COVID Vaccine Package Insert is Blank Because Up-to-Date Information is Online. (2021). Accessed: January 15, 2024:
https://apnews.com/article/fact-checking-956865924140.
Science brief: COVID-19 vaccines and vaccination. CDC COVID-19 Science Briefs [Internet]. National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases, Atlanta (GA); 2021.
Madewell ZJ, Yang Y, Longini IM Jr, Halloran ME, Dean NE: Household transmission of SARS-CoV-2: a systematic review and meta-analysis. JAMA Netw Open. 2020, 3:e2031756. 10.1001/jamanetworkopen.2020.31756
Mostaghimi D, Valdez CN, Larson HT, Kalinich CC, Iwasaki A: Prevention of host-to-host transmission by SARS-CoV-2 vaccines. Lancet Infect Dis. 2022, 22:e52-8. 10.1016/S1473-3099(21)00472-2
Lipsitch M, Kahn R: Interpreting vaccine efficacy trial results for infection and transmission. Vaccine. 2021, 39:4082-8. 10.1016/j.vaccine.2021.06.011
Maeda M, Murata F, Fukuda H: Effect of COVID-19 vaccination on household transmission of SARS-CoV-2 in the Omicron era: the vaccine effectiveness, networking, and universal safety (VENUS) study. Int J Infect Dis. 2023, 134:200-6. 10.1016/j.ijid.2023.06.017
Allen H, Tessier E, Turner C, et al.: Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: national cohort study, England. Epidemiol Infect. 2023, 151:e58. 10.1017/S0950268823000420
Menegale F, Manica M, Zardini A, et al.: Evaluation of waning of SARS-CoV-2 vaccine-induced immunity: a systematic review and meta-analysis. JAMA Netw Open. 2023, 6:e2310650. 10.1001/jamanetworkopen.2023.10650
Abou-Saleh H, Abo-Halawa BY, Younes S, et al.: Neutralizing antibodies against SARS-CoV-2 are higher but decline faster in mRNA vaccinees compared to individuals with natural infection. J Travel Med. 2022, 29:130. 10.1093/jtm/taac130
Shrestha NK, Burke PC, Nowacki AS, Simon JF, Hagen A, Gordon SM: Effectiveness of the coronavirus disease 2019 bivalent vaccine. Open Forum Infect Dis. 2023, 10:ofad209. 10.1093/ofid/ofad209
Shrestha NK, Burke PC, Nowacki AS, Gordon SM: Risk of coronavirus disease 2019 (COVID-19) among those up-to-date and not up-to-date on COVID-19 vaccination by US CDC criteria. PLoS One. 2023, 18:e0293449. 10.1371/journal.pone.0293449
Vaccine-Induced Immune Response to Omicron Wanes Substantially Over Time. (2022). Accessed: October 16, 2023:
https://www.nih.gov/news-events/news-releases/vaccine-induced-immune-response-omicron-wanes-substantially-over-time.
Bar-On YM, Goldberg Y, Mandel M, et al.: Protection by a fourth dose of BNT162b2 against Omicron in Israel. N Engl J Med. 2022, 386:1712-20. 10.1056/NEJMoa2201570
Ophir Y, Shira-Raz Y, Zakov S, et al.: The efficacy of COVID-19 vaccine boosters against severe illness and deaths scientific fact or wishful myth?. J Am Phys Surg. 2023, 28:20-7.
Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JP: SARS-CoV-2 reinfections: overview of efficacy and duration of natural and hybrid immunity. Environ Res. 2022, 209:112911. 10.1016/j.envres.2022.112911
Spinardi JR, Srivastava A: Hybrid immunity to SARS-CoV-2 from infection and vaccination-evidence synthesis and implications for new COVID-19 vaccines. Biomed. 2023, 11:370. 10.3390/biomedicines11020370
Bigay J, Le Grand R, Martinon F, Maisonnasse P: Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol. 2022, 13:932408. 10.3389/fmicb.2022.932408
Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW: Vaccine-associated enhanced disease and pathogenic human coronaviruses. Front Immunol. 2022, 13:882972. 10.3389/fimmu.2022.882972
Bossche GV: The Inescapable Immune Escape Pandemic. Pierucci Publishing, Aspen, CO; 2023.
Rodríguez Y, Rojas M, Beltrán S, et al.: Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J Autoimmun. 2022, 132:102898. 10.1016/j.jaut.2022.102898
Rojas M, Herrán M, Ramírez-Santana C, Leung PS, Anaya JM, Ridgway WM, Gershwin ME: Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun. 2023, 139:103070. 10.1016/j.jaut.2023.103070
Talotta R: Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to "potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases". Clin Immunol. 2021, 224:108665. 10.1016/j.clim.2021.108665
Akinosoglou K, Tzivaki I, Marangos M: Covid-19 vaccine and autoimmunity: awakening the sleeping dragon. Clin Immunol. 2021, 226:108721. 10.1016/j.clim.2021.108721
Polykretis P, Donzelli A, Lindsay JC, et al.: Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity. 2023, 56:2259123. 10.1080/08916934.2023.2259123
Appendix 2.2 Cumulative and Interval Summary Tabulation of Serious and Non-serious Adverse Reactions From Post-marketing Data Sources (BNT162B2). Pfizer Inc., New York, NY; 2022.
https://www.globalresearch.ca/wp-content/uploads/2023/05/pfizer-report.pdf.
Wang L, Davis PB, Kaelber DC, Volkow ND, Xu R: Comparison of mRNA-1273 and BNT162b2 vaccines on breakthrough SARS-CoV-2 infections, hospitalizations, and death during the delta-predominant period. JAMA. 2022, 327:678-80. 10.1001/jama.2022.0210
Beatty AL, Peyser ND, Butcher XE, et al.: Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Netw Open. 2021, 4:e2140364. 10.1001/jamanetworkopen.2021.40364
Kitagawa H, Kaiki Y, Sugiyama A, et al.: Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. J Infect Chemother. 2022, 28:576-81. 10.1016/j.jiac.2021.12.034
Valera-Rubio MM, Sierra-Torres MI, Castillejo García RR, Cordero-Ramos JJ, López-Márquez MR, Cruz-Salgado ÓO, Calleja-Hernández MÁM: Adverse events reported after administration of BNT162b2 and mRNA-1273 COVID-19 vaccines among hospital workers: a cross-sectional survey-based study in a Spanish hospital. Expert Rev Vaccines. 2022, 21:533-40. 10.1080/14760584.2022.2022478
Chapin-Bardales J, Gee J, Myers T: Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA. 2021, 325:2201-2. 10.1001/jama.2021.5374
Chapin-Bardales J, Myers T, Gee J, et al.: Reactogenicity within 2 weeks after mRNA COVID-19 vaccines: findings from the CDC v-safe surveillance system. Vaccine. 2021, 39:7066-73. 10.1016/j.vaccine.2021.10.019
Nahab F, Bayakly R, Sexton ME, Lemuel-Clarke M, Henriquez L, Rangaraju S, Ido M: Factors associated with stroke after COVID-19 vaccination: a statewide analysis. Front Neurol. 2023, 14:1199745. 10.3389/fneur.2023.1199745
Gazit S, Shlezinger R, Perez G, et al.: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naturally acquired immunity versus vaccine-induced immunity, reinfections versus breakthrough infections: a retrospective cohort study. Clin Infect Dis. 2022, 75:e545-51. 10.1093/cid/ciac262
Wang Z, Muecksch F, Schaefer-Babajew D, et al.: Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021, 595:426-31. 10.1038/s41586-021-03696-9
Gallais F, Gantner P, Bruel T, et al.: Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine. 2021, 71:103561. 10.1016/j.ebiom.2021.103561
Hall VJ, Foulkes S, Charlett A, et al.: SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet. 2021, 397:1459-69. 10.1016/S0140-6736(21)00675-9
Harvey RA, Rassen JA, Kabelac CA, et al.: Association of SARS-CoV-2 seropositive antibody test with risk of future infection. JAMA Intern Med. 2021, 181:672-9. 10.1001/jamainternmed.2021.0366
Turner JS, Kim W, Kalaidina E, et al.: SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021, 595:421-5. 10.1038/s41586-021-03647-4
Wang Z, Yang X, Zhong J, et al.: Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun. 2021, 12:1724. 10.1038/s41467-021-22036-z
Reynolds CJ, Pade C, Gibbons JM, et al.: Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science. 2022, 377:eabq1841. 10.1126/science.abq1841
Patalon T, Saciuk Y, Perez G, Peretz A, Ben-Tov A, Gazit S: Dynamics of naturally acquired immunity against severe acute respiratory syndrome coronavirus 2 in children and adolescents. J Pediatr. 2023, 257:113371. 10.1016/j.jpeds.2023.02.016
Sahin U, Karikó K, Türeci Ö: mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014, 13:759-80. 10.1038/nrd4278
Majzoub RA, Alrofaie OH, Almotreb LK, Alateeq SK, Bin Obaid FR: Parental hesitancy and attitude concerning COVID-19 vaccine and its side effects in Saudi Arabia, Eastern region. Cureus. 2023, 15:e48776. 10.7759/cureus.48776
Dudley MZ, Schwartz B, Brewer J, et al.: COVID-19 vaccination attitudes, values, intentions: US parents for their children, September 2021. Vaccine. 2023, 41:7395-408. 10.1016/j.vaccine.2023.11.002
Abdulkader MA Sr, Merza MA: Immediate and long-term adverse events of COVID-19 vaccines: a one-year follow-up study from the Kurdistan Region of Iraq. Cureus. 2023, 15:e47670. 10.7759/cureus.47670
Sultana A, Mim SR, Saha A, et al.: Assessing the self-reported after events following immunization of COVID-19 vaccines in Turkey and Bangladesh. Environ Sci Pollut Res Int. 2023, 30:47381-93. 10.1007/s11356-023-25527-2
Priority List of Adverse Events of Special Interest: COVID-19. (2020). Accessed: October 16, 2023:
https://brightoncollaboration.org/priority-list-of-adverse-events-of-special-interest-covid-19/.
U.S. Department of Health & Human Services (DHHS): Vaccine Side Effects. (2022). Accessed: July 5, 2023:
https://www.hhs.gov/immunization/basics/safety/side-effects/index.html.
Skidmore M: Covid-19 illness and vaccination experiences in social circles affect covid-19 vaccination decisions. . Sci Publ Health Pol & Law . 2023, 4:208-26.
Hulscher N, Alexander PE, Amerling R, et al.: A systematic review of autopsy findings in deaths after COVID-19 vaccinations. Zenodo. 2023, 10.5281/zenodo.8120770
Hulscher N, Hodkinson R, Makis W, McCullough PA: Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis. ESC Heart Failure. 2024, 1-14. 10.1002/ehf2.14680
Schwab C, Domke LM, Hartmann L, et al.: Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. 2023, 112:431-440. 10.1007/s00392-022-02129-5
Pathology Conference: Vaccine-induced spike protein production in the brain, organs etc., now proven [Webpage in German]. (2022). Accessed: October 16, 2023:
https://report24.news/pathologie-konferenz-impfinduzierte-spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/.
Reutlingen Autopsy/Histology Study: Side-effects from corona vaccinations [Webpage in German]. (2020). Accessed: October 16, 2023:
https://corona-blog.net/2022/03/10/reutlinger-autopsie-histologie-studie-nebenwirkungen-und-todesfaelle-durch-die-cor....
Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA: A potential role of the spike protein in neurodegenerative diseases: a narrative review. Cureus. 2023, 15:e34872. 10.7759/cureus.34872
Blaylock RL: COVID update: What is the truth?. Surg Neurol Int. 2022, 13:167. 10.25259/SNI_150_2022
Tinari S: The EMA covid-19 data leak, and what it tells us about mRNA instability. BMJ. 2021, 372:n627. 10.1136/bmj.n627
Assessment Report COVID-19 Vaccine Moderna. European Medicines Agency, Amsterdam, The Netherlands; 2021.
https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-ass....
Assessment Report: Comirnaty. European Medicines Agency, Amsterdam, The Netherlands; 2021.
https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf.
Milano G, Gal J, Creisson A, Chamorey E: Myocarditis and COVID-19 mRNA vaccines: a mechanistic hypothesis involving dsRNA. Future Virol. 2021, 17:10.2217/fvl-2021-0280
Bruce Yu Y, Taraban MB, Briggs KT: All vials are not the same: potential role of vaccine quality in vaccine adverse reactions. Vaccine. 2021, 39:6565-9. 10.1016/j.vaccine.2021.09.065
Speicher DJ, Rose J, Gutschi, Wiseman DM, McKernan K: DNA fragments detected in monovalent and bivalent Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada: exploratory dose response relationship with serious adverse events [PREPRINT]. OSFPreprints. 2023, 10.31219/osf.io/mjc97
McKernan K, Helbert Y, Kane LT, McLaughlin S: Sequencing of bivalent Moderna and Pfizer mRNA vaccines reveals nanogram to microgram quantities of expression vector dsDNA per dose [PREPRINT]. OSFPreprints. 2023, 10.31219/osf.io/b9t7m
Senate Hearing On Dangerous and Potentially Fatal Errors Within The Methods of Vaccine Distribution.. ( September 20, 2023.). Accessed: January 17, 2023:
https://arvozylo.medium.com/senate-hearing-on-dangerous-and-potentially-fatal-errors-within-the-methods-of-vaccine-di....
Health Canada Confirms Undisclosed Presence of DNA Sequence in Pfizer Shot. (2023). Accessed: December 20, 2023:
https://www.theepochtimes.com/world/exclusive-health-canada-confirms-undisclosed-presence-of-dna-sequence-in-pfizer-s....
Vilchez RA, Butel JS: Emergent human pathogen simian virus 40 and its role in cancer. Clin Microbiol Rev. 2004, 17:495-508. 10.1128/CMR.17.3.495-508.2004
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F: Association between simian virus 40 and human tumors. Front Oncol. 2019, 9:670. 10.3389/fonc.2019.00670
Vilchez RA, Kozinetz CA, Arrington AS, et al.: Simian virus 40 in human cancers. Am J Med. 2003, 114:675-84. 10.1016/s0002-9343(03)00087-1
Qi F, Carbone M, Yang H, Gaudino G: Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med. 2011, 5:683-97. 10.1586/ers.11.51
Li S, MacLaughlin FC, Fewell JG, et al.: Muscle-specific enhancement of gene expression by incorporation of SV40 enhancer in the expression plasmid. Gene Ther. 2001, 8:494-7. 10.1038/sj.gt.3301419
Orient JM: Beyond negative evidence: Lessons from the disputes on DNA contamination of COVID-19 vaccines. J Am Phys Surg. 2023, 28:106-12.
Florida Surgeon General Calls for Halt in Use of COVID mRNA Vaccines. (2024). Accessed: January 3, 2024:
https://childrenshealthdefense.org/defender/florida-joseph-ladapo-halt-covid-mrna-vaccines/.
Florida Surgeon General Calls for a Complete Halt on Pfizer and Moderna mRNA Vaccines. (2024). Accessed: January 4, 2024:
https://petermcculloughmd.substack.com/p/breaking-florida-surgeon-general.
FDA Fails to Address DNA Adulteration Concerns. (2023). Accessed: December 17, 2023:
https://brownstone.org/articles/fda-fails-to-address-dna-adulteration-concerns/.
WCH Expert Panel Finds Cancer-Promoting DNA Contamination in Covid-19 Vaccines. (2023). Accessed: December 20, 2023:
https://worldcouncilforhealth.org/news/news-releases/dna-contamination-covid-19-vaccines/.
Block J: Covid-19: researchers face wait for patient level data from Pfizer and Moderna vaccine trials. BMJ. 2022, 378:o1731. 10.1136/bmj.o1731
European Medicines Agency: Comirnaty. (2020). Accessed: December 20, 2023:
https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty.
Nance KD, Meier JL: Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci. 2021, 7:748-56. 10.1021/acscentsci.1c00197
Morais P, Adachi H, Yu YT: The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol. 2021, 9:789427. 10.3389/fcell.2021.789427
That Substack About N1-Methylpseudouridines and Frameshifting. (2023). Accessed: December 12, 2023:
https://jessicar.substack.com/p/that-substack-about-n1-methylpseudouridines.
Mulroney TE, Pöyry T, Yam-Puc JC, et al.: N(1)-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024, 625:189-94. 10.1038/s41586-023-06800-3
Vojdani A, Vojdani E, Kharrazian D: Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Front Immunol. 2020, 11:617089. 10.3389/fimmu.2020.617089
Kanduc D, Shoenfeld Y: Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunol Res. 2020, 68:310-3. 10.1007/s12026-020-09152-6
VAERS Reports Contradict Claim of No AEs in Frameshifting Context. (2023). Accessed: December 16, 2023:
https://jessicar.substack.com/p/vaers-reports-contradict-claim-of.
Wiseman DM, Gutschi LM, Speicher DJ, et al.: Ribosomal frameshifting and misreading of mRNA in COVID-19 vaccines produces “off-target” proteins and immune responses eliciting safety concerns: Comment on UK study by Mulroney et al. [PREPRINT]. OSFPreprints. 10.31219/osf.io/nt8jh
Bellavite P, Ferraresi A, Isidoro C: Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and mRNA vaccines. Biomed. 2023, 11:451. 10.3390/biomedicines11020451
Giannotta G, Murrone A, Giannotta N: COVID-19 mRNA vaccines: the molecular basis of some adverse events. Vaccines (Basel). 2023, 11:747. 10.3390/vaccines11040747
Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA: Response to Barriere et al. Food Chem Toxicol. 2023, 178:113898. 10.1016/j.fct.2023.113898
Halma MTJ, Rose J, Lawrie T: The novelty of mRNA viral vaccines and potential harms: a scoping review. J. 2023, 6:220-35. 10.3390/j6020017
Ostrowski SR, Søgaard OS, Tolstrup M, Stærke NB, Lundgren J, Østergaard L, Hvas AM: Inflammation and platelet activation after COVID-19 vaccines - possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis. Front Immunol. 2021, 12:779453. 10.3389/fimmu.2021.779453
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J: ’Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomed. 2023, 11:2287. 10.3390/biomedicines11082287
Kostoff RN, Kanduc D, Porter AL, et al.: Vaccine- and natural infection-induced mechanisms that could modulate vaccine safety. Toxicol Rep. 2020, 7:1448-58. 10.1016/j.toxrep.2020.10.016
Devaux CA, Camoin-Jau L: Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction similar to SARS-CoV-2 infection. Viruses. 2023, 15:1045. 10.3390/v15051045
Kanduc D: From anti-severe acute respiratory syndrome coronavirus 2 immune response to cancer onset via molecular mimicry and cross-reactivity. Glob Med Genet. 2021, 8:176-82. 10.1055/s-0041-1735590
Lyons-Weiler J: Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun. 2020, 3:100051. 10.1016/j.jtauto.2020.100051
Syenina A, Gan ES, Toh JZ, et al.: Adverse effects following anti-COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes. PLoS Biol. 2022, 20:e3001643. 10.1371/journal.pbio.3001643
Hou X, Zaks T, Langer R, Dong Y: Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021, 6:1078-94. 10.1038/s41578-021-00358-0
Cui S, Wang Y, Gong Y, et al.: Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb). 2018, 7:473-9. 10.1039/c8tx00005k
Ashman RB, Blanden RV, Ninham BW, Evans DF: Interaction of amphiphilic aggregates with cells of the immune system. Immunol Today. 1986, 7:278-83. 10.1016/0167-5699(86)90010-1
Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol. 1994, 12:991-1045. 10.1146/annurev.iy.12.040194.005015
Sellaturay P, Nasser S, Ewan P: Polyethylene glycol-induced systemic allergic reactions (anaphylaxis). J Allergy Clin Immunol Pract. 2021, 9:670-5. 10.1016/j.jaip.2020.09.029
Bigini P, Gobbi M, Bonati M, Clavenna A, Zucchetti M, Garattini S, Pasut G: The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. Nat Nanotechnol. 2021, 16:1169-71. 10.1038/s41565-021-01001-3
Taieb A, Mounira EE: Pilot findings on SARS-CoV-2 vaccine-induced pituitary diseases: a mini review from diagnosis to pathophysiology. Vaccines (Basel). 2022, 10:2004. 10.3390/vaccines10122004
Aliberti L, Gagliardi I, Rizzo R, et al.: Pituitary apoplexy and COVID-19 vaccination: a case report and literature review. Front Endocrinol (Lausanne). 2022, 13:1035482. 10.3389/fendo.2022.1035482
Yan HY, Young YH: Vertigo/dizziness following COVID-19 vaccination. Am J Otolaryngol. 2023, 44:103723. 10.1016/j.amjoto.2022.103723
Krauson AJ, Casimero FV, Siddiquee Z, Stone JR: Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccines. 2023, 8:141. 10.1038/s41541-023-00742-7
Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H: SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021, 10:68563. 10.7554/eLife.68563
Meyer K, Patra T, Vijayamahantesh, Ray R: SARS-CoV-2 spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells. J Virol. 2021, 95:e0079421. 10.1128/JVI.00794-21
Nyström S, Hammarström P: Amyloidogenesis of SARS-CoV-2 spike protein. J Am Chem Soc. 2022, 144:8945-50. 10.1021/jacs.2c03925
Cocco N, Leibundgut G, Pelliccia F, et al.: Arrhythmias after COVID-19 vaccination: have we left all stones unturned?. Int J Mol Sci. 2023, 24:10405. 10.3390/ijms241210405
Kim H, Ahn HS, Hwang N, et al.: Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Sci Rep. 2023, 13:8926. 10.1038/s41598-023-36070-y
Bozkurt B: Shedding light on mechanisms of myocarditis with COVID-19 mRNA vaccines. Circulation. 2023, 147:877-80. 10.1161/CIRCULATIONAHA.123.063396
Yonker LM, Swank Z, Bartsch YC, et al.: Circulating spike protein detected in post- COVID-19 mRNA vaccine myocarditis. Circulation. 2023, 147:867-76. 10.1161/CIRCULATIONAHA.122.061025
Baumeier C, Aleshcheva G, Harms D, et al.: Intramyocardial inflammation after COVID-19 vaccination: an endomyocardial biopsy-proven case series. Int J Mol Sci. 2022, 23:6940. 10.3390/ijms23136940
Cadegiani FA: Catecholamines are the key trigger of COVID-19 mRNA vaccine-induced myocarditis: a compelling hypothesis supported by epidemiological, anatomopathological, molecular, and physiological findings. Cureus. 2022, 14:e27883. 10.7759/cureus.27883
Kim N, Jung Y, Nam M, et al.: Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep. 2017, 7:10328. 10.1038/s41598-017-09675-3
McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG: T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015, 523:612-6. 10.1038/nature14468
Liu J, Wang J, Xu J, et al.: Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov. 2021, 7:99. 10.1038/s41421-021-00329-3
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH: Not-so-opposite ends of the spectrum: CD8(+) T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol. 2021, 22:809-19. 10.1038/s41590-021-00949-7
Irrgang P, Gerling J, Kocher K, et al.: Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol. 2023, 8:eade2798. 10.1126/sciimmunol.ade2798
Uversky VN, Redwan EM, Makis W, Rubio-Casillas A: IgG4 antibodies induced by repeated vaccination may generate immune tolerance to the SARS-CoV-2 spike protein. Vaccines (Basel). 2023, 11:99. 10.3390/vaccines11050991
Chevaisrakul P, Lumjiaktase P, Kietdumrongwong P, Chuatrisorn I, Chatsangjaroen P, Phanuphak N: Hybrid and herd immunity 6 months after SARS-CoV-2 exposure among individuals from a community treatment program. Sci Rep. 2023, 13:763. 10.1038/s41598-023-28101-5
Loacker L, Kimpel J, Bánki Z, Schmidt CQ, Griesmacher A, Anliker M: Increased PD-L1 surface expression on peripheral blood granulocytes and monocytes after vaccination with SARS-CoV2 mRNA or vector vaccine. Clin Chem Lab Med. 2023, 61:e17-9.
Jiang X, Wang J, Deng X, et al.: Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019, 18:10. 10.1186/s12943-018-0928-4
Ai L, Xu A, Xu J: Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond. Adv Exp Med Biol. 2020, 1248:33-59. 10.1007/978-981-15-3266-5_3
Goldman S, Bron D, Tousseyn T, et al.: Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: a case report. Front Med (Lausanne). 2021, 8:798095. 10.3389/fmed.2021.798095
Sekizawa A, Hashimoto K, Kobayashi S, et al.: Rapid progression of marginal zone B-cell lymphoma after COVID-19 vaccination (BNT162b2): a case report. Front Med (Lausanne). 2022, 9:963393. 10.3389/fmed.2022.963393
Tachita T, Takahata T, Yamashita S, et al.: Newly diagnosed extranodal NK/T-cell lymphoma, nasal type, at the injected left arm after BNT162b2 mRNA COVID-19 vaccination. Int J Hematol. 2023, 118:503-7. 10.1007/s12185-023-03607-w
Zamfir MA, Moraru L, Dobrea C, et al.: Hematologic malignancies diagnosed in the context of the mRNA COVID-19 vaccination campaign: a report of two cases. Medicina (Kaunas). 2022, 58:874. 10.3390/medicina58070874
Angues VR, Bustos PY: SARS-CoV-2 vaccination and the multi-hit hypothesis of oncogenesis. Cureus. 2023, 15:e50703. 10.7759/cureus.50703
Echaide M, Labiano I, Delgado M, et al.: Immune profiling uncovers memory T-cell responses with a Th17 signature in cancer patients with previous SARS-CoV-2 infection followed by mRNA vaccination. Cancers (Basel). 2022, 14:4464. 10.3390/cancers14184464
Gandolfo C, Anichini G, Mugnaini M, et al.: Overview of anti-SARS-CoV-2 immune response six months after BNT162b2 mRNA vaccine. Vaccines (Basel). 2022, 10:171. 10.3390/vaccines10020171
Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D: mRNA vaccines against SARS-CoV- 2: advantages and caveats. Int J Mol Sci. 2023, 24:5944. 10.3390/ijms24065944
Russell MW, Mestecky J: Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol. 2022, 13:957107. 10.3389/fimmu.2022.957107
Lavelle EC, Ward RW: Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol. 2022, 22:236-50. 10.1038/s41577-021-00583-2
Primorac D, Vrdoljak K, Brlek P, et al.: Adaptive immune responses and immunity to SARS-CoV-2. Front Immunol. 2022, 13:848582. 10.3389/fimmu.2022.848582
Gould VM, Francis JN, Anderson KJ, Georges B, Cope AV, Tregoning JS: Nasal IgA provides protection against human influenza challenge in volunteers with low serum influenza antibody titre. Front Microbiol. 2017, 8:900. 10.3389/fmicb.2017.00900
Mettelman RC, Allen EK, Thomas PG: Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity. 2022, 55:749-80. 10.1016/j.immuni.2022.04.013
Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X: Intranasal COVID-19 vaccines: from bench to bed. EBioMedicine. 2022, 76:103841. 10.1016/j.ebiom.2022.103841
Feng A, Obolski U, Stone L, He D: Modelling COVID-19 vaccine breakthrough infections in highly vaccinated Israel-the effects of waning immunity and third vaccination dose. PLOS Glob Public Health. 2022, 2:e0001211. 10.1371/journal.pgph.0001211
Lyke KE, Atmar RL, Islas CD, et al.: Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant. Cell Rep Med. 2022, 3:100679. 10.1016/j.xcrm.2022.100679
Tamandjou C, Auvigne V, Schaeffer J, Vaux S, Parent du Châtelet I: Effectiveness of second booster compared to first booster and protection conferred by previous SARS-CoV-2 infection against symptomatic Omicron BA.2 and BA.4/5 in France. Vaccine. 2023, 41:2754-60. 10.1016/j.vaccine.2023.03.031
McCarthy MW: Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opin Biol Ther. 2022, 22:1353-8. 10.1080/14712598.2022.2137402
Noori M, Nejadghaderi SA, Rezaei N: "Original antigenic sin": a potential threat beyond the development of booster vaccination against novel SARS-CoV-2 variants. Infect Control Hosp Epidemiol. 2022, 43:1091-2. 10.1017/ice.2021.199
Lv H, Wu NC, Tsang OT, et al.: Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep. 2020, 31:107725. 10.1016/j.celrep.2020.107725
Shrock E, Fujimura E, Kula T, et al.: Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 2020, 370:4250. 10.1126/science.abd4250
Röltgen K, Nielsen SC, Silva O, et al.: Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022, 185:1025-1040.e14. 10.1016/j.cell.2022.01.018
Samanovic MI, Cornelius AR, Gray-Gaillard SL, et al.: Robust immune responses after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals [PREPRINT]. medRxiv. 2021, 10.1101/2021.02.07.21251311
Offit PA: Bivalent Covid-19 vaccines - a cautionary tale. N Engl J Med. 2023, 388:481-3. 10.1056/NEJMp2215780
Reina J: Possible effect of the "original antigenic sin" in vaccination against new variants of SARS-CoV-2. Rev Clin Esp (Barc). 2022, 222:91-2. 10.1016/j.rceng.2021.05.005
Gao FX, Wu RX, Shen MY, et al.: Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. iScience. 2022, 25:105479. 10.1016/j.isci.2022.105479
Shahhosseini N, Babuadze GG, Wong G, Kobinger GP: Mutation signatures and in silico docking of novel SARS-CoV-2 variants of concern. Microorganisms. 2021, 9:926. 10.3390/microorganisms9050926
Beeraka NM, Sukocheva OA, Lukina E, Liu J, Fan R: Development of antibody resistance in emerging mutant strains of SARS CoV-2: impediment for COVID-19 vaccines. Rev Med Virol. 2022, 32:e2346. 10.1002/rmv.2346
Dumonteil E, Herrera C: Polymorphism and selection pressure of SARS-CoV-2 vaccine and diagnostic antigens: implications for immune evasion and serologic diagnostic performance. Pathogens. 2020, 9:584. 10.3390/pathogens9070584
López-Cortés GI, Palacios-Pérez M, Veledíaz HF, Hernández-Aguilar M, López-Hernández GR, Zamudio GS, José MV: The spike protein of SARS-CoV-2 is adapting because of selective pressures. Vaccines (Basel). 2022, 10:864. 10.3390/vaccines10060864
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS: A detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations. Front Immunol. 2022, 13:801522. 10.3389/fimmu.2022.801522
Seneff S, Nigh G: Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. Int J Vaccine Theory Pract Res. 2021, 2:38-79. 10.56098/ijvtpr.v2i1.23
Azim Majumder MA, Razzaque MS: Repeated vaccination and 'vaccine exhaustion': relevance to the COVID-19 crisis. Expert Rev Vaccines. 2022, 21:1011-4. 10.1080/14760584.2022.2071705
Dhama K, Nainu F, Frediansyah A, et al.: Global emerging Omicron variant of SARS-CoV-2: impacts, challenges and strategies. J Infect Public Health. 2023, 16:4-14. 10.1016/j.jiph.2022.11.024
Krause PR, Fleming TR, Longini IM, et al.: Placebo-controlled trials of Covid-19 vaccines - why we still need them. N Engl J Med. 2021, 384:e2. 10.1056/NEJMp2033538
Historical Vaccine Safety Concerns. (2020). Accessed: October 16, 2023:
https://www.cdc.gov/vaccinesafety/concerns/concerns-history.html.
Rotavirus Vaccine (RotaShield®) and Intussusception. (1999). Accessed: October 16, 2023:
https://www.cdc.gov/vaccines/vpd-vac/rotavirus/vac-rotashield-historical.htm.
Pfizer: Periodic Safety Update Report #3 for Active Substance: COVID-19 mRNA Vaccine, BNT162b2. BioNTech Manufacturing GmbH, Mainz, Germany; 2022.
https://tkp.at/wp-content/uploads/2023/03/3.PSUR-1.pdf.
Horowitz: Confidential Pfizer document shows the company observed 1.6 million adverse events covering nearly every organ system. (2023). Accessed: October 16, 2023:
https://www.conservativereview.com/horowitz-confidential-pfizer-document-shows-the-company-observed-1-6-million-adver....
Aarstad J, Kvitastein OA: Is there a link between the 2021 COVID-19 vaccination uptake in Europe and 2022 excess all-cause mortality?. Asian Pac J Health Sci. 2022, 2023:25-31. 10.21276/apjhs.2023.10.1.6
Rancourt DG, Baudin M, Hickey J, Mercier J: COVID-19 Vaccine-Associated Mortality in the Southern Hemisphere. Correlation Research in the Public Interest, Ontario, Canada; 2023.
Rancourt DG, Baudin M, Hickey J, Mercier J: Age-Stratified COVID-19 Vaccine-Dose Fatality Rate for Israel and Australia. Correlation Research in the Public Interest, Ontario, Canada;
Pfizer-BioNTech Submits New COVID Vaccine Booster Targeting BA.5 to the FDA for Authorization. (2022). Accessed: October 16, 2023:
https://www.usatoday.com/story/news/health/2022/08/22/pfizer-covid-booster-omicron-submitted-fda-emergency-authorizat....
Bardosh K, Krug A, Jamrozik E, et al.: COVID-19 vaccine boosters for young adults: a risk benefit assessment and ethical analysis of mandate policies at universities. J Med Ethics. 2022, 10.1136/jme-2022-108449
Palmer M, Bhakdi S, Wodarg W: On the Use of the Pfizer and the Moderna COVID-19 mRNA Vaccines in Children and Adolescents. Doctors for COVID Ethics, Amsterdam, The Netherlands; 2022.
Mansanguan S, Charunwatthana P, Piyaphanee W, Dechkhajorn W, Poolcharoen A, Mansanguan C: Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Trop Med Infect Dis. 2022, 7:196. 10.3390/tropicalmed7080196
Buergin N, Lopez-Ayala P, Hirsiger JR, et al.: Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail. 2023, 25:1871-81. 10.1002/ejhf.2978
Singer ME, Taub IB, Kaelber DC: Risk of myocarditis from COVID-19 infection in people under age 20: a population-based analysis [PREPRINT]. medRxiv. 2022, 10.1101/2021.07.23.21260998
Amir M, Latha S, Sharma R, Kumar A: Association of cardiovascular events with COVID-19 vaccines using vaccine adverse event reporting system (VAERS): a retrospective study. Curr Drug Saf. 2023, 10.2174/0115748863276904231108095255
Hurley P, Krohn M, LaSala T, et al.: Group Life COVID-19 Mortality Survey Report. Society of Actuaries Research Institute, Schaumburg, Illinois; 2023.
https://www.soa.org/4ac0fd/globalassets/assets/files/resources/experience-studies/2023/group-life-covid-mort-06-23.pdf.
Quarterly Excess Death Rate Analysis. (2022). Accessed: December 13, 2023:
https://phinancetechnologies.com/HumanityProjects/Quarterly%20Excess%20Death%20Rate%20Analysis%20-%20US.htm.
Irrefutable Evidence Vaccine Mandates Killed & Disabled Countless Americans. (2022). Accessed: July 7, 2023:
https://twitter.com/NFSC_HAGnews/status/1640624477527769088.
Polykretis P, McCullough PA: Rational harm‐benefit assessments by age group are required for continued COVID‐19 vaccination. Scand J Immunol. 2022, e13242. 10.1111/sji.13242
Ittiwut C, Mahasirimongkol S, Srisont S, et al.: Genetic basis of sudden death after COVID-19 vaccination in Thailand. Heart Rhythm. 2022, 19:1874-9. 10.1016/j.hrthm.2022.07.019
Lai CC, Chen IT, Chao CM, Lee PI, Ko WC, Hsueh PR: COVID-19 vaccines: concerns beyond protective efficacy and safety. Expert Rev Vaccines. 2021, 20:1013-25. 10.1080/14760584.2021.1949293
Lee S, Lee CH, Seo MS, Yoo JI: Integrative analyses of genes about venous thromboembolism: An umbrella review of systematic reviews and meta-analyses. Medicine (Baltimore). 2022, 101:e31162. 10.1097/MD.0000000000031162
Why is Life Expectancy in the US Lower Than in Other Rich Countries?. (2020). Accessed: December 13, 2023:
https://ourworldindata.org/us-life-expectancy-low.
Rancourt DG, Baudin M, Mercier J: COVID-Period mass vaccination campaign and public health disaster in the USA from age/state-resolved all-cause mortality by time, age-resolved vaccine delivery by time, and socio-geo-economic data [PREPRINT]. ResearchGate. 2022,
Sennfält S, Norrving B, Petersson J, Ullberg T: Long-term survival and function after stroke: a longitudinal observational study from the Swedish stroke register. Stroke. 2019, 50:53-61. 10.1161/STROKEAHA.118.022913
Yu CK, Tsao S, Ng CW, et al.: Cardiovascular assessment up to one year after COVID-19 vaccine-associated myocarditis. Circulation. 2023, 148:436-9. 10.1161/CIRCULATIONAHA.123.064772
Barmada A, Klein J, Ramaswamy A, et al.: Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol. 2023, 8:eadh3455. 10.1126/sciimmunol.adh3455
Brociek E, Tymińska A, Giordani AS, Caforio AL, Wojnicz R, Grabowski M, Ozierański K: Myocarditis: etiology, pathogenesis, and their implications in clinical practice. Biology (Basel). 2023, 12:874. 10.3390/biology12060874
Davis HE, McCorkell L, Vogel JM, Topol EJ: Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023, 21:133-46. 10.1038/s41579-022-00846-2
Yong SJ, Liu S: Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies. Rev Med Virol. 2022, 32:e2315. 10.1002/rmv.2315
Raveendran AV, Jayadevan R, Sashidharan S: Long COVID: an overview. Diabetes Metab Syndr. 2021, 15:869-75. 10.1016/j.dsx.2021.04.007
Arjun MC, Singh AK, Pal D, et al.: Characteristics and predictors of long COVID among diagnosed cases of COVID-19. PLoS One. 2022, 17:e0278825. 10.1371/journal.pone.0278825
Hulscher N, Procter BC, Wynn C, McCullough PA: Clinical approach to post-acute sequelae after COVID-19 infection and vaccination. Cureus. 2023, 15:e49204. 10.7759/cureus.49204
Vogel G, Couzin-Frankel J: Rare link between coronavirus vaccines and Long Covid-like illness starts to gain acceptance. Science. 2023, 381:6653. 10.1126/science.adj5565
Brogna C, Cristoni S, Marino G, et al.: Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: possible molecular mechanisms. Proteomics Clin Appl. 2023, 17:e2300048. 10.1002/prca.202300048
Craddock V, Mahajan A, Spikes L, et al.: Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. J Med Virol. 2023, 95:e28568. 10.1002/jmv.28568
Dhuli K, Medori MC, Micheletti C, et al.: Presence of viral spike protein and vaccinal spike protein in the blood serum of patients with long-COVID syndrome. Eur Rev Med Pharmacol Sci. 2023, 27:13-9. 10.26355/eurrev_202312_34685
Diexer S, Klee B, Gottschick C, et al.: Association between virus variants, vaccination, previous infections, and post-COVID-19 risk. Int J Infect Dis. 2023, 136:14-21. 10.1016/j.ijid.2023.08.019
Scholkmann F, May CA: COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): similarities and differences. Pathol Res Pract. 2023, 246:154497. 10.1016/j.prp.2023.154497
Rodziewicz TL, Houseman B, Hipskind JE: Medical error reduction and prevention. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL); 2023.
Oyebode F: Clinical errors and medical negligence. Med Princ Pract. 2013, 22:323-33. 10.1159/000346296
Kohn LT, Corrigan JM, Donaldson MS: To Err Is Human: Building a Safer Health System. The National Academies Press, Washington, DC; 2000. 10.17226/9728
How Many Deaths Were Caused by the Covid Vaccines?. (2023). Accessed: 2024:
https://wherearethenumbers.substack.com/p/how-many-deaths-were-caused-by-the.
Lazarus R, Baos S, Cappel-Porter H, et al.: Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial. Lancet. 2021, 398:2277-87. 10.1016/S0140-6736(21)02329-1
Ioannidis JP: Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ. 2021, 99:19-33F. 10.2471/BLT.20.265892